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Scarred patterns in surface waves
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Surface wave patterns are investigated experimentally in a system geometry that has become a paradigm of
quantum chaos: the stadium billiard. Linear waves in bounded geometries for which classical ray trajectories
are chaotic are known to give rise to scarred patterns. Here, we utilize parametrically forced surface waves
~Faraday waves!, which become progressively nonlinear beyond the wave instability threshold, to investigate
the subtle interplay between boundaries and nonlinearity. Only a subset~three main types! of the computed
linear modes of the stadium are observed in a systematic scan. These correspond to modes in which the wave
amplitudes are strongly enhanced along paths corresponding to certain periodic ray orbits. Many other modes
are found to be suppressed, in general agreement with a prediction by Agam and Altshuler based on boundary
dissipation and the Lyapunov exponent of the associated orbit. Spatially asymmetric or disordered~but time-
independent! patterns are also found even near onset. As the driving acceleration is increased, the time-
independent scarred patterns persist, but in some cases transitions between modes are noted. The onset of
spatiotemporal chaos at higher forcing amplitude often involves a nonperiodic oscillation between spatially
ordered and disordered states. We characterize this phenomenon using the concept of pattern entropy. The rate
of change of the patterns is found to be reduced as the state passes temporarily near the ordered configurations
of lower entropy. We also report complex but highly symmetric~time-independent! patterns far above onset in
the regime that is normally chaotic.

DOI: 10.1103/PhysRevE.63.026208 PACS number~s!: 05.45.2a, 47.54.1r
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I. INTRODUCTION

Parametrically forced surface waves arising as a resu
the Faraday instability have provided an excellent oppo
nity to study nonlinear pattern formation. One of the spec
features of this system is that the system size relative to
basic correlation length can be varied so that both the la
aspect ratio and small aspect ratio limits can be explored
large aspect ratio, all of the classic ordered patterns h
been found, including stripes, hexagons, and squares; a
tional exotic structures such as quasicrystalline and supe
tice patterns have also been found, as well as secondar
stabilities giving rise to spatiotemporal chaos. Extens
references can be found in Ref.@1–3#.

The case of small aspect ratio has also been studie
rectangular and circular containers. Typically the wave p
terns found near onset are either normal modes of the
tainer or symmetrical combinations of these modes@4#. For
example, in the circular case the normal modes are Be
functions of the radius multiplied by sinusoidal functions
the azimuthal angle. The effects of container shape can
either a nuisance or a benefit depending on one’s poin
view. One example of the usefulness of considering c
tainer geometry is the study by Laneet al. @5# in which the
conceptual differences between square symmetry and sq
geometry were elucidated. On the other hand, finite size
fects impede efforts to utilize amplitude equations to d
scribe the wave dynamics.

*Email address: akudrolli@clarku.edu
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The influence of the container shape is also a fundame
issue in the field of quantum chaos. There is known to b
close correspondence between certain finite quantum
tems~or analogous systems supporting classical waves! and
their particle~or ray-optic! counterparts@6,7#. Of particular
interest are nonintegrable quantum systems with class
counterparts that are chaotic, such as the billiard form
from two semicircles separated by two straight edges.
almost all initial conditions, a particle launched inside suc
billiard will exhibit sensitive dependence on initia
conditions—the hallmark of chaos. Experimental, numeric
and theoretical studies have shown that the statistical be
ior of the wave functions of the quantum or wave version
this system is distinctly different from the behavior for ‘‘in
tegrable’’ geometries such as a square or circle@8–10#. Most
notably, regions of high amplitude in the wave functions
called scars—are found along some of the periodic orbits
the classical counterpart@11#.

Effects of this type were explored to a limited extent u
ing parametrically forced surface waves by Blu¨mel et al.
@12#. Their experiment utilized water as a working fluid an
high frequency excitation. They reported observations
‘‘scarlets,’’ that are ridgelike structures consistent with a ra
dom superposition of plane waves@13# ~but are not located
along periodic orbits.! On the other hand, no clear evidenc
for the simpler ‘‘scarred’’ wave functions was given. Th
possible effects of hydrodynamic nonlinearity on the util
of the ray optics approach has also not been discussed. N
linearity is in principle important, since even infinitesimal
above the onset of instability, saturation of the wave am
tude is produced by nonlinear effects.

In this paper we first present observations of the spa
©2001 The American Physical Society08-1
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modes of Faraday waves in a finite nonintegrable geome
close to onset where nonlinearity is as weak as possible,
the waves might be usefully described by quasiclassical~ray
optics! methods. A low viscosity fluid in a stadium shape
container is used for this purpose. Scarred patterns tha
semble the computed eigenfunctions of the stadium ge
etry are clearly evident, but some of the linear eigenfuncti
are apparently suppressed. The relative suppression of
tain modes has been plausibly explained by Agam and
shuler @14# in terms of higher dissipation rates for tho
modes near the boundaries in comparison with the mo
that are observed.

We then consider the evolution of the wave patterns as
degree of nonlinearity is increased. Transitions betw
modes are found at some driving frequencies, along wit
general increase in spatial complexity. The scars that
characteristic of the linear eigenmodes are often evident
stantially above onset. Finally, we consider the developm
of spatiotemporal chaos~STC! in the stadium geometry
Though the onset of STC is strongly dependent on the e
tation frequency, the boundaries continue to play a large r
leading, for example, to coherent oscillations between s
metric and asymmetric states, a phenomenon that we s
using the concept of pattern entropy.

II. THEORETICAL BACKGROUND

A fluid layer with a free surface is subjected to an osc
latory vertical acceleration of amplitudea. The surface is flat
until a critical accelerationac is reached, at which point th
surface becomes unstable and standing wave patterns ar
served that oscillate at half the driving frequency. T
threshold acceleration depends on the frequency and the
cosity of the fluid. It is convenient to define a dimensionle
driving parametere5(a2ac)/ac that measures the depa
ture from onset and hence the degree of nonlinearity.
patterns are time independent for a range of positivee but
eventually a secondary instability gives rise to spatiotem
ral chaos. In this section, we briefly discuss the linear inv
cid theory, the effect of viscosity, and the role of nonline
ity, as they pertain to the present investigation.

The linear stability theory for Faraday waves was fi
developed by Benjamin and Ursell@15#. We summarize it
here because the quantum/classical correspondence o
for linear waves. They started from the Euler~inviscid! equa-
tion of motion and the continuity equation for an ideal flu
with a free surface in an oscillating gravitational field, a
simplified the equations by retaining only the linear ter
appropriate for small amplitude waves. The surface defor
tion h(x,t) as a function of spatial coordinatex and timet
may be written as a superposition of normal modesc i(x)
with coefficientsAi(t):

h~x,t !5(
i

Ai~ t !c i~x!, ~1!

wherec i(x) is a complete orthogonal set of eigenfunctio
of the Helmholtz equation
02620
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~¹21ki
2!c i~x!50. ~2!

The sidewall boundary condition is imposed by setting
normal component of the velocity of the fluid at the wall
zero. This leads to a quantization condition onki ~the wave
number!. In addition, ki satisfies the dispersion relatio
which relates the frequency of oscillationv of the fluid to
the wave number:

v25tanh~kid!S G

r
ki

31gki D , ~3!

wherer is the fluid density,G is the surface tension,d is the
mean fluid depth, andg is the gravitational acceleration. I
our experiment, the wave number is sufficiently large so t
the surface tension term is much greater than the gra
term. The hyperbolic tangent factor is close to unity sin
kid is large.

The time-dependent amplitudesAi of these normal modes
satisfy the Mathieu equation

d2Ai

dt2
1ki tanhkihS ki

2 G

r
1g2acos~vt ! DAi50. ~4!

An instability occurs and the amplitudeAi grows exponen-
tially in time when the eigenvalue is in a band~known as the
stability tongue! such that the frequency of oscillation of th
fluid is half the driving frequency. The instability occurs
arbitrarily small driving amplitude in the absence of visco
ity.

Damping, which is provided by a number of distin
mechanisms in addition to bulk viscosity, can be included
means of a phenomenological linear damping term as
viewed in Ref.@16#. Though treating damping in this wa
may not be fully adequate, the main effect is to reduce
width of the stability tongue in parameter space and raise
critical threshold to a finite amplitude. A proper theoretic
treatment of instability in the viscous case has been give
Ref. @17#, where the shapes of the computed stability bou
aries were presented.

If the accelerationa is slightly higher thanac , all modes
in a band (k2Dk/2,k1Dk/2) are accessible and can be e
cited. The wave number widthDk of the stability band for
small e has been estimated@18,19# to be

Dk58A2rnvAe/3G, ~5!

wheren is the kinematic viscosity of the fluid. For a suitab
choice ofe,r, andv, and assuming no interaction betwee
modes, one then expects to find either single mode patt
or superpositions of a few modes whose thresholds lie in
window (k2Dk/2,k1Dk/2).

The cumulative number of eigenvalues of the Helmho
equationN(k) is related to the geometry and is given by

N~k!>
S

4p
k27

L

4p
k, ~6!
8-2
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SCARRED PATTERNS IN SURFACE WAVES PHYSICAL REVIEW E63 026208
whereS is the area,L is the perimeter of the stadium, and th
negative or positive sign corresponds to Dirichlet or Ne
mann boundary condition, respectively@6#. At high k, the
perimeter term is negligible compared to the area term. T
ing e50.01 and using Eqs.~5!, ~6! with an areaS that is
appropriate to the experiments reported here, one can
mate that the typical number of accessible modes is abo
for a driving frequency of 70 Hz.

What are the effects of nonlinearity? A nonlinear theo
that describes regular Faraday wave patterns in large con
ers rather well has been given by Zhang and Vin˜als @20# and
Chen and Vin˜als@21#. In this theory, an evolution equation
determined for the time derivative of the amplitude of a ty
cal Fourier modeB1 of the interfacial deformation. It may b
expressed in the form

dB1

dT
5aB12g0B1

32 (
mÞ1

g~um1!Bm
2 B1 , ~7!

whereT is a slow time variable, the linear term is due to t
basic instability, the cubic self-interaction term produc
saturation of the wave pattern, and the coupling terms
other modes~which depend on their relative angleu) are
also of cubic order. The constants have been computed,
the ratiog(u)/g0 is of order unity and independent ofe. This
implies that coupling effects between the accessible mo
may be substantial. The theory was able to explain the s
ing cascade of 2n-fold patterns discovered by Binks and va
de Water@2#. It also explains semiquantitatively the appea
ance of striped, square and hexagonal patterns observe
experiments using viscous fluids in large containers@1#.
However, the amplitude equation is variational, and is o
appropriate near onset. It cannot describe nonuniform
terns, secondary instabilities, or spatiotemporal chaos.
earlier approach that allowed spatially varying patterns w
given by Milner @22#.

The amplitude equations also ignore the effects of
boundary. For slightly viscous fluids in small containers
large fraction of the dissipation occurs in the boundary la
and can in fact be the leading cause of dissipation@14,23,24#.
In work stimulated by the experiments reported here, Ag
and Altshuler@14# show that the dissipation near the boun
ary depends strongly on the nature of the mode.

III. EXPERIMENTAL APPARATUS

The apparatus is similar to that used by Gluckmanet al.
in Ref. @25#. Figure 1 shows a schematic diagram of t
experimental setup. The stadium shaped container mad
Delrin has the following dimensions: depthd51.25 cm, ra-
dius of semicirclesr 53 cm, and length of straight edgel
54.5 cm. The top and bottom plates of the container
made of glass to allow the transmission of light. The fluid
silicone oil of kinematic viscosity 0.02 cm2s21, chosen for
its stable surface tension and good wetting characteristics
minimize meniscus waves, a brim full boundary conditi
was prepared by machining a ledge in the boundary at
same height as the fluid. Therefore the fluid meets the le
at 90°. By maintaining the fluid under brim full condition
02620
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the fluid surface is pinned to the ledge and boundary di
pation is reduced. This situation has been modeled as a
richlet boundary condition (c50) @26#. The container is rig-
idly attached to an electromagnetic shaker~Vibration Test
Systems Model 40C! and the acceleration is measured w
an accelerometer. The apparatus is placed within
temperature-controlled environment. The driving frequen
is selected to be greater than 55 Hz to be in the capill
wave limit, but less than 75 Hz to prevent the density
modes from becoming too high.

The patterns are imaged with shadowgraph techniqu
The specific implementation is discussed in depth in R
@25#. Light from an expanded and collimated incident bea
is collected and imaged onto a CCD~charge-coupled device!
video camera via a large collecting lens and the camera l
The resulting images can be interpreted by consider
which rays of light reach the CCD plane after passi
through the fluid. The relatively small aperture of the cam
lens restricts the rays that reach the CCD. All the rays t
leave the fluid surface at an angle measured from the nor
that is greater than a critical angle~typically about 1022 rad!
are blocked. Since the critical angle is so small, light is c
lected only from the nearly horizontal regions of the wa
surface. Therefore, the bright regions in an image co
sponds to local extrema or antinodes of the wave patt
Images are averaged over one video frame, 1/30 s, whic
more than a full cycle of the standing waves. The imag
process is nonlinear in the wave height, but a quantita
model for the measured intensity was presented and teste
Ref. @25#.

IV. PATTERNS NEAR ONSET

We made a survey of the time-independent wave patte
near onset over the range 55 to 65 Hz by changing the
quency in 0.1 Hz steps. In order to obtain useful statistics
the surface wave patterns, a systematic procedure was
lowed: for each selected frequency,ac was first measured to

FIG. 1. The Faraday wave and shadow graph imaging appara
A stadium shaped container is rigidly attached to an electrom
netic shaker, which provides a sinusoidal oscillation of amplitudea.
8-3
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A. KUDROLLI, MATHEW C. ABRAHAM, AND J. P. GOLLUB PHYSICAL REVIEW E 63 026208
within 0.1% and thene was raised to 0.01, the smallest val
that could be maintained accurately. The thresholdac is
3.1 m s22 at f 560 Hz and increases weakly with fre
quency .

A sequence of images from the survey for driving fr
quencyf between 60.1 and 62.8 Hz, and with an approxim
spacing of 0.4 Hz~i.e. every fourth image!, is shown in Fig.
2. This spacing is comparable to the experimentally obser
increment~0.3 Hz! typically required to obtain a distinctly
different pattern in this frequency range; it is greater then
computed mean level spacing@about 0.1 Hz in this frequency
range as estimated from Eqs.~5! and ~6!#. Most of the ob-
served patterns show the reflection symmetries of the
dium. Regions of large amplitude are often located alo
lines that would form periodic orbits of the classical analo
Since these regions are similar to those found in other
merical and experimental investigations@11,27#, we refer to
the patterns containing such enhancements as scarred
terns.

We compare the observed patterns with numerically co
puted eigenstates of the Laplace operator for the stad

FIG. 2. Shadow graph images of patterns observed in a stad
shaped container filled with silicone oil as a function of drivin
frequency (e50.01; n50.02 cm2 s21). The frequency interval be
tween displayed images is comparable to that required for the
tern to change significantly.~a! 60.1 Hz,~b! 60.4 Hz,~c! 60.8 Hz,
~d! 61.2 Hz,~e! 61.6 Hz,~f! 62.1 Hz,~g! 62.4 Hz,~h! 62.8 Hz. The
patterns are strongly influenced by the shape of the container.
symmetric scarred patterns and asymmetric patterns are found~see
text!.
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geometry, obtained for comparable mean wavenumber u
an algorithm due to Heller@28#. Sample computed eigen
states~selected from a large number of distinct patterns! are
shown in Fig. 3. We find that some of the computed sta
resemble observed patterns. On the other hand, a one-to
correspondence for sequences of eigenstates was defin
not observed. Furthermore, certain computed eigenstates
occur frequently such as the ‘‘whispering gallery’’ mod
@Fig. 3~d!# were not observed in the full experimental fr
quency range.

Interestingly, most of the observed symmetric patterns
semble one of three basic classes of eigenstates show
Figs. 3~a!–~c!. For instance, Figs. 2~a!,2~d! resemble the
bouncing ball eigenstate Fig. 3~a!; Figs. 2~g!, 2~h! are close
to the longitudinal eigenstate of Fig. 3~b!; and Figs. 2~b!,2~e!
are a combination of the longitudinal and bowtie eigensta
of Figs. 3~b!,3~c!. It is noteworthy that among the observe
patterns are states such as Fig. 2~c! that do not have the

m

t-

th

FIG. 3. Selected eigenfunctions of the Helmholtz equation fo
stadium geometry identical to that used in the experiments. w
numbers are chosen to be in the range explored experimentally~a!
Bouncing ball mode,~b! longitudinal mode,~c! bowtie mode,~d!
whispering gallery mode. A large proportion of the experimen
patterns are similar to~a!–~c!, which are scarred by periodic orbit
~shown by lines! of the corresponding ray system. However eige
states such as the whispering gallery mode~d! are not observed in
the experiments.

TABLE I. The percentages of patterns of various types obser
in a sample of 128 patterns near onset (e50.01), for driving fre-
quency between 55 and 65 Hz. A typical example of a bounc
ball pattern is shown Fig. 2~a!, a longitudinal pattern in Fig. 2~g!, a
bowtie pattern in Fig. 2~e!, and a disordered pattern in Fig. 2~c!.
Patterns with several components such as Fig. 2~b!, which contains
both the longitudinal and bowtie modes, are counted in both
egories. Therefore the sum of the percentages is slightly over 10

Class of pattern Percentage of occurrence

Bouncing ball 27.2%6 1.6%
Longitudinal 50.1%6 3.3%
Bowtie 13.2%6 2.5%
Disordered 13.2%6 2.5%
8-4



a
s
a
n

d
te

er
ca
on

i
e
u
ti
.

ca

to

o

l

. I
d

n
f t

d
n

th
e
w

fa
en
o

dent

this
n-

an-
. In

aos

of
ved

rong

s
ce-

m
er
tl

SCARRED PATTERNS IN SURFACE WAVES PHYSICAL REVIEW E63 026208
reflection symmetries of the stadium. We refer to these
disordered patterns. Table I summarizes the percentage
the onset patterns that were visually judged to approxim
particular computed scarred eigenstates in the freque
range 55 to 65 Hz ate50.01. ~Visual comparison was use
because automated pattern recognition, which we attemp
was not sufficiently reliable.!

Since the discovery of scars, there have been a numb
theoretical attempts to obtain a quantitative measure for s
ring @29–31# based on eigenstate overlap, Wigner functi
overlap, and inverse participation ratios for the amplitudes
the vicinity of the scars. To utilize such measures experim
tally, the local wave amplitude is required with high acc
racy. The shadowgraph technique used here is quantita
but nonlinear@25# and does not provide this information
Development of a quantitative experimental measure of s
ring has proven to be difficult even for linear probes.

We use the concept of ‘‘pattern entropy’’ as a tool
classify the patterns. Egolf, Melnikov, and Bodenschatz@32#
have applied this concept successfully to measure the c
plexity of patterns observed in Rayleigh-Be´nard convection.
The pattern entropy is calculated from the power spectrum
the pattern. If P(k) is the normalized two-dimensiona
power spectrum of the pattern at timet, then the pattern
entropyE(t) is defined as

E~ t !52(
k

P~k!ln@P~k!#. ~8!

HereE(t) measures the spectral complexity of a pattern
the image consists of just one Fourier mode of amplitu
unity, thenE50; otherwiseE.0. To minimize the effects
of experimental noise, we sum contributions only in a ba
of wave numbers centered at the mean wave number o
pattern with a rage of625%. In Table II, the approximate
entropy ranges for the various types of patterns observe
the range 55–65 Hz are given. Note that the patterns are
distinguishable solely by their entropy, since some of
ranges overlap. However, the pattern entropy can be us
in studies of time dependence farther above onset, as
show in Sec. VI.

V. PATTERNS BEYOND ONSET

Here we examine the evolution of the wave patterns
ther from onset, where the interactions between differ
Fourier components of the waves become increasingly n

TABLE II. Pattern spectral entropy, which is a measure of co
plexity and is used in classifying the observed patterns. The patt
are obtained in the driving frequency range 55 to 65 Hz, sligh
above onset (e50.01).

Class of pattern Approximate entropy ranges

Bouncing ball 3.0 to 4.2
Longitudinal 4.2 to 5.6
Bowtie 4.5 to 5.8
Disordered 5.8 to 6.4
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linear and the approximation of Eq.~2! becomes inappli-
cable. The patterns were observed to be time indepen
while changing adiabatically withe for e,0.3. On the other
hand, they become weakly time dependent fore>0.3 at most
frequencies.

The evolution toward time dependence with increasinge
depends on the excitation frequency. Three examples of
evolution are shown in Figs. 4–6. For some driving freque
cies, the patterns remain reflection-symmetric ase is in-
creased, but exhibit transitions from one spatial mode to
other prior to the onset of time dependence, as in Fig. 5
these cases, the transition to spatial disorder~asymmetry!
tends to coincide with the onset of spatiotemporal ch
~STC!.

It is important to note that ase increases, the width of the
stability tongue grows@see Eq. ~5!#: for example, at f
574.1 Hz ande50.2 the number of accessible modes
the container is approximately 35. Therefore, the obser

FIG. 4. Steady patterns as a function of driving amplitudee
illustrate the effect of increasing nonlinearity atf 562.8 Hz.~a! e
50.01, ~b! e50.025,~c! e50.125,~d! e50.249. The influence of
the scarred eigenfunction persists even in the presence of st
nonlinearity. Spatiotemporal chaos develops at highere, beyond the
range shown here.

FIG. 5. Same as Fig. 4, except thatf 571.4 Hz.~a! e50.010,
~b! e50.020, ~c! e50.078, ~d! e50.252. In this case, the scar
persist but the dominant mode switches. The ‘‘bowtie’’ enhan
ment is lost and a ‘‘bouncing ball’’ enhancement appears.

-
ns
y

8-5



as
t

bl
pa

n
i

rn
-
re

e
r

a
e
00
en
en

y-
pen-
ear

and

and
ere
e-
en-
ing

t-

-

cent
ata
ap-
tern
ing

x
al
m

ular

ra
py
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mode switching might be a combined effect of the incre
in the number of accessible modes and an increase in
degree of nonlinearity that couples them. It is remarka
that the container boundary continues to influence the
terns even ate50.252@Fig. 5~d!#, where nonlinearity clearly
plays a major role.

The variability of the nonlinear development is evide
from examining the examples in Figs. 4–6. In Fig. 4, there
a general increase in complexity withe, but the dominant
mode does not change. In Fig. 6, the near onset patte
nearly obliterated even ate50.025 by the growing complex
ity, and the pattern is also distinctly asymmetric, while
maining time independent.

In one instance, a complex but symmetric tim
independent pattern was observed at an unusually high d
ing amplitude ofe50.8 at a frequency of 65.0 Hz, in
regime where spatiotemporal chaos is usually fully dev
oped. The image shown in Fig. 7 was averaged over 3
images taken over a period of 5 min to test for time dep
dence. The lack of blurring demonstrates its time indep
dence.

FIG. 6. Same as Fig. 4, except thatf 574.7 Hz.~a! e50.010,
~b! e50.015, ~c! e50.025, ~d! e50.058 for f 574.7 Hz. In this
case, the pattern becomes disordered at rather lowe, but remains
time independent.

FIG. 7. A stationary symmetric pattern that is quite comple
observed ate50.8 (f 565 Hz), a regime where spatiotempor
chaos usually predominates. This image is an average over 5
its sharpness demonstrates its stationarity.
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VI. ROLE OF ORDERED STATES IN THE REGIME OF
SPATIOTEMPORAL CHAOS

For driving amplitudes just beyond the frequenc
dependent onset of spatiotemporal chaos, the time de
dence of the pattern is often intermittent; the patterns app
to oscillate between states that are relatively ordered
states that are relatively disordered~see the images in Fig. 8
and a corresponding web-based movie@33#!. The power
spectra of these typical patterns are also shown in Fig. 8
indicate the greater complexity of the disordered case, wh
the power is distributed more uniformly on the ring corr
sponding to the dominant wave number. The time dep
dence and complexity of the patterns are monitored us
two quantitative measures:~i! the rate of change of the pa
ternR(t) and~ii ! the entropyE(t) as defined in Eq.~8!. The
rate of changeR(t) was calculated by subtracting two con
secutive images I(x,t1Dt) and I(x,t) separated by a time
interval of Dt50.36 sec, and calculatingR(t) according to
the following formula:

R~ t !5c( @ I ~x,t1Dt !2I ~x,t !#2, ~9!

wherex is the position andc is a constant scaling factor.
In Fig. 9~a!, a section of the resulting quantityR(t) is

shown as function of time forf 571.9 Hz ande50.55. The
data has been smoothed by averaging over four adja
points. At every pronounced minimum of this smoothed d
we find that the corresponding pattern is symmetric and
pears to have long range order. At all other times the pat
is asymmetric and disordered. A graph of the correspond
entropyE(t) is shown in Fig. 9~b!. Examples of the ordered

,

in;

FIG. 8. The onset of spatiotemporal chaos involves an irreg
oscillation between~a! relatively ordered and~b! disordered pat-
terns (e50.55 andf 571.9 Hz). The corresponding power spect
are shown in~c! and~d!, respectively. The greater spectral isotro
in ~d! contributes to a higher pattern entropy.
8-6
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~X! and disordered~Y! states are shown in Fig. 8, where th
location in time is indicated by symbolsX(t5124 s) and
Y(t5136 s), respectively, in Fig. 9. AtX, where the pattern
entropy is low,R(t) is small, while atY, where the pattern
entropy is high,R(t) is large. This correlation betweenR(t),
and E(t) holds true for most of the other strong peaks a
valleys.

For highere(.0.8) the oscillations diminish in strengt
and uniform STC is observed. In this regime, followin
Gluckmanet al. @25#, we obtained the time averaged patte

FIG. 9. ~a! The rate of changeR(t) of the pattern as a function
of time, as computed by differences between successive image~b!
The pattern entropyE(t) as a function of time (e50.55, andf
571.9 Hz). Both functions oscillate in time and they are stron
correlated; both are smaller for ordered patterns@e.g., point X,
shown in Fig. 8~a!# than for disordered patterns@e.g., point Y,
shown in Fig. 8~b!#. A movie corresponding to this figure is avai
able at the internet address in Ref.@33#.

FIG. 10. ~a! Instantaneous and~b! time-averaged patterns in th
regime of spatiotemporal chaos (e51.2,f 565 Hz). We find that
scars usually persist~except at very highe) and that the dominan
pattern found at most frequencies is the one shown.
02620
d

after adding 3000 instantaneous images obtained over
minutes. An example of an instantaneous pattern is show
Fig. 10~a!. The resultant average pattern is shown in F
10~b!. The average reveals considerable ordered structure
cluding remnants of the bouncing ball states. This pheno
enon is seen at most frequencies and persists up toe;1.6.
Beyond this point, scars were visually absent and the ave
patterns are locally parallel to the boundary, as observe
circular or square patterns by Gluckmanet al. @25#.

VII. DISCUSSION

In this paper we have discussed the parametrically for
wave patterns formed in a stadium-shaped container con
ing a low viscosity fluid, as a function of driving frequenc
and amplitude. The patterns near onset (e50.01) were com-
pared to a simple model consisting of linearized equati
that reduce to the Helmholtz equation with Dirichlet boun
ary conditions~see Sec. II!. While a large proportion of ob-
served patterns resemble the numerically computed eig
states of the stadium, many of the computed eigenstates~for
instance, the whispering gallery modes! were not observed in
a scan with sufficient frequency resolution to detect the
The observed patterns may be broadly classified into th
categories:~a! bouncing ball patterns,~b! longitudinal pat-
terns, and~c! bowtie patterns, which have high amplitude
near corresponding periodic orbits. In addition, a signific
number of disordered patterns~lacking in symmetry but time
independent! were observed near onset. Furthermore, the
served mode spacing (;0.3 Hz) is somewhat greater tha
the mean eigenvalue separation implied by Eq.~6!
(;0.1 Hz). These observations imply that the simpl
model is inadequate even close to onset.

Recently, Agam and Altshuler have offered an explan
tion for the selection of modes at onset@14# by considering
the stability of the periodic orbits corresponding to the sca
They argue that a threshold for excitation of a particu
scarred pattern is given by

h.gb1gp1l/2, ~10!

whereh is proportional to the rate that energy is pumped in
the system~i.e., the driving amplitude!, gb is the dissipation
rate in the bulk of the fluid,gp is the dissipation near the
perimeter, andl is the Lyapunov exponent of the ray orb
that predominantly scars the pattern. The bulk dissipat
gb5nk2 is the same for all the patterns and corresponds
approximately 2 sec21 in the frequency window used in th
experiments. Therefore the appearance of a scarred pa
depends on a combination of the two remaining fact
which are orbit dependent. Stability of a pattern is favor
both by a small Lyapunov exponent of the associated s
ring orbit, and by small perimeter dissipationgp .

In the limit of high wave numberk relevant to our experi-
ments, Agam and Altshuler derive an expression for
damping rate of scars due to boundary effects:

gp5
Avn/2

L (
i

@12cos2~f i !#

cos~f i !
, ~11!
8-7
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wherev is the angular frequency,n is the viscosity,L is the
length of the periodic orbit, and the sum is over all the c
lision points of the orbit with the boundary,f i being the
angle between the orbit and a line perpendicular to
boundary at the collision point. The parametergp and the
Lyapunov exponent have been calculated for most of
shortest periodic orbits and a long ergodic orbit in Ref.@14#.
The perimeter dissipationgp , which can be either smaller o
larger thangb , varies between 0.2 and 3.0 sec21. The ex-
treme values correspond to patterns scarred by the horizo
orbit, and the ergodic orbit respectively.

Most of the features observed in the experiments n
onset appear to be captured by Eq.~10!. The bouncing ball
orbit is prominent because the Lyapunov exponent is zer
that case, and the longitudinal orbit occurs because of r
tively low perimeter dissipation. The whispering gallery o
bits and others with angles that come close top/2 have par-
ticularly large boundary dissipation and are suppress
Equation~10! implies that if one increases the dissipation
the boundary so that it dominates, the longitudinal orbit w
be the last to survive. This is precisely what we observe
the experiments when the level of the fluid is lowered
change that results in higher perimeter dissipation becaus
motion of the contact line.

The theory just cited@14# is also able to account for th
observed tendency of one scarred pattern to suppress
nearby eigenmodes through nonlinear interactions, as we
the existence of some asymmetric patterns. At some driv
frequencies the patterns are observed to switch modes ae is
increased~Fig. 5!. This occurs especially when the bowt
cs

et

r,

.

A
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state is observed at onset, an observation that may be re
to the larger perimeter dissipation and Lyapunov exponen
the bowtie mode.

At higher driving amplitude, additional nonlinear effec
occur as indicated by the growth in spatial complexity, a
no adequate theoretical treatment exists. However, the o
patterns are often robust, persisting in the presence of
creasing spatial complexity. The boundaries remain influ
tial even beyond the onset of time dependence. At su
ciently high e(;0.2), the onset patterns are no long
visible, though they persist in the time average.

Strong intermittency in the degree of order of the patte
is observed in the regime of spatiotemporal chaos. Furth
more, the rate of change of the patternR(t) just above the
STC onset is strongly correlated with the order as charac
ized by the entropyE(t). The more ordered patterns evolv
more slowly in time, a striking observation that remains to
explained. This tendency for ordered patterns to be m
stable may be related to the complex but highly symme
and time-independent pattern observed at atypically large
celeration~Fig. 7!.
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